
System-On-Chip Data Processing and Data Handling Spaceflight Electronics

I. Kleyner _, R. Katz 2 and H. Tiggeler 3

1Orbital Sciences Corp.

2NASA/Goddard Space Flight Center

3University of Surrey

Abstract

This paper presents a methodology and a

tool set which implements automated

generation of moderate-size blocks of

customized intellectual property (IP), thus

effectively reusing prior work and

minimizing the labor intensive, error-prone

parts of the design process. Customization

of components allows for optimization for

smaller area and lower power consumption,

which is an important factor given the
limitations of resources available in

radiation-hardened devices. The effects of

variations in HDL coding style on the

efficiency of synthesized code for various

commercial synthesis tools are also

discussed.

I. INTRODUCTION

Performance requirements for

spaceflight electronics have been increasing

as detectors produce greater amounts of data

at higher resolutions. Concurrently, there is

an increasing need to produce spacecraft

electronics in shorter periods of time using

less spacecraft resources.
It is a common occurrence that similar or

identical spaceflight data handling and

processing hardware functions tend to be

redesigned repeatedly by independent teams

of engineers or even within the same team.

This obviously is inefficient and costly in

both development and verification time.

AltemativeIy, commercial IP cores are

available for many functions required for

spaceflight hardware design; however, these

cores tend to be ill suited for the specifics of

flight hardware design due to the limitation
of resources available in radiation-hardened

devices and reliability issues, particularly for

the radiation environment.

The objective of our research is to

develop, demonstrate, and refine

architectural techniques and tools for FPGA

designers to permit rapid, reliable

development of high-speed processing and

data handling functions, integrated onto a

single chip.

II. IP GENERATION ENVIRONMENT

Development of an integrated IP

generation environment was the first phase

of the project. As shown in Figure 1,

Kompiler combines customized VHDL

code-writing capabilities with built-in test

vector generation, synthesis execution, and
simulation for verification.

Figure 1. Kompiler 1P Generation Flow.

Generation of VHDL code for a

component is performed by utilizing a

previously coded generic "template," the
contents of which are embeddedin the
sourcecode of Kompiler. The front end
user interfaceprovidesselectionof various
options to satisfy the requirementsof the
particular application for which the
componentis intended to be used, while
allowing a trade-offbetweenresourcesand
features.For a data-heavycomponent(such
as a ROM) input data is provided as a
specially formatted ASCII text file.
Additionally, a synthesis tool selection
option is provided to optimize the created
codefor knownspecificsof aparticulartool
to be usedfor synthesizingthe component.
Furthermore,morethanonecodingstyle for
a block may be available. As a result, a
customized version of a generic
component'sVHDL codeis produced.

Kompiler llll_I l

W,_eVHDLCode| C_ I _r_'ea_dS_ I

i C:',.USER'_omplerkRAM vhd __

' M_Lr_eL_gth I Simula_c_ " ,

; ,o1_-'_,_,I Iv"_" -'-I_'

::.._-_-_--j LIFOIU_T,_]UART,_KPLl MKSI

Figure 2. Kompiler User Interface.

Creation of customized VHDL code for

a component is a useful feature by itself, but

it can be even more powerful if used in

conjunction with other Kompiler features.

During the next step, the VHDL code

generated by Kompiler is synthesized from

within the Kompiler environment, using the

command line interface of the synthesis tool.

If more than one coding style for the

component can be utilized or different

synthesis tools are available, the code

creation/synthesis loop can be repeated for
all available combinations. In this fashion,

the optimal solution may be obtained with

minimal effort from the design engineer. In

case of FPGA space applications, this is

often the one consuming the least amount of

resources and power.

After completing the code

creation/synthesis phase, the component's

implementation is automatically verified.

The Kompiler calls the gate-level simulator

via its command line interface, with the

previously generated stimulus/checking file

as a parameter. Design verification is a

labor-intensive, error-prone phase of the

design process, often being larger than the

detailed circuit design. Utilizing test vectors

algorithmically generated by the Kompiler

saves considerable time and effort, as does

Kompiler's automated processing of the
simulation results.

III. COMBINATIONAL IP BLOCKS

AND CODING STYLES

As was mentioned above, System-on-

Chip (SoC) building blocks to be

implemented in the Kompiler environment

include a variety of universal and commonly

used components such as ROM, RAM,

FIFO, LIFO, and Register File. More

complex and specific structures such as

UART Receiver, UART Transmitter, Timer,

and Data Encoder/Decoder can also be

developed into Kompiler blocks. In addition

to these data handling functions, arithmetic

cores such as an array multiplier, CORDIC

functions, and DSP cores (FIR filter, IIR

filter, Correlator) are prime candidates.

The generation of combinational logic

blocks (ROM component) was chosen as the

first Kompiler application for a variety of

reasons. Such a component is described

functionally by defining the valueof output
for every combinationof inputs. This is
rather laborious and error-prone to code
manually, but the task can easily be
automated. In addition, the ROM
component represents a convenient
opportunity to study the advantagesand
disadvantagesof different coding styles,
since automatedcode creation allows for
fast and efficient implementation of
differentcodingtechniques.

The most straightforwardstyle for the
ROM component,named "Word-Case" is
the most natural for "human" coding. One
long VHDL Case statement is used to
implement the structure with the address
usedastheevaluatedexpression.Thelist of
choicesrepresentsall possiblecombinations
of inputs and corresponding values for
outputsbasedon the contentsof the input
data file, which contains the functional
descriptionof theblock.

When "000001010" => ZData <= "i00101";

When "000001011" => ZData <= "iiii00";

When "000001100" => ZData <= "i01101";

Alternatively, each bit of the output can

be coded using separate Case statements

("Bit-Case" style)

When "0000000" [

"0000100" I

"1111110" => ZData(0) <= '0';

or input data can be represented by an

array of constants ("Hans-Array" style)

constant ROM : rom_array := (

"0000000000000001",

"1110001001100001",

"1101000100110001" ,

"1110001101001001",

Additionally, we have developed two

more styles of coding for combinational

logic blocks. By viewing the ROM as a set

of functions, the minterms can be selected

and written as logic equations in a

sum-of-product format. Either the "ones"

may be grouped and the minterms written

directly or the "zeros" may be written and

the resulting function complemented.

When selecting "ones" we have

generated code segments that look like this:

ZData (2) <=

or (ZA(0)

or . . .

'0' or (ZA(0)

and not ZA(1)

and not ZA(2)

and not ZA(3)

and not ZA(4)

and not ZA(5)

and not ZA(6)

and ZA (1)

and not ZA(2)

and not ZA(3)

and not ZA(4)

and not ZA(5)

and not ZA(6)

When selecting "zeros" the generated
code is structured in this manner:

ZData(2) <= not

or

or . . .

('0' or (not ZA(0)

and not ZA(1)

and not ZA(2)

and not ZA(3)

and not ZA(4)

and not ZA(5)

and not ZA(6)

(not ZA(0)

and ZA(1)

and not ZA(2)

and not ZA(3)

and not ZA(4)

and not ZA(5)

and not ZA(6)

Obviously, writing the "logic equations"

code manually is not a task that can be

accomplished reasonably for a logic block of

any significant size. However, the algorithm

for automating such task was rather

straightforward to code into the Kompiler.

The resulting VHDL code is often somewhat

bulky andquiteunreadablefor a humaneye,
but, as was discovered later, sometimes
preferredby certainsynthesistools.

Besides the usefulnessof the ROM
componentfor theKompilerasausefulSoC
building block, it enabledus to study the
efficiency of different synthesistools. This
included the effects of processingVHDL
descriptionsof blocks of logic writtenusing
different coding styles. Additionally, for a
fixed description, the targeting of the
generatednetlist into different technologies
was studied. Among the synthesistools
available for us during this study are
Actmap from Actel, Synplify from
Synplicity, DesignCompiler from Synopsys
and Leonardo from Exemplar. A few
real-life input data sets were randomly
selectedandall five aforementionedcoding
styles were utilized to generateVHDL
blocks, which were then synthesizedfor
variousActel FPGA devices. Someof the
resultsareillustratedin Figure3.

The first testcase(Figure3a) represents
results (in terms of module count) of
implementinga 128x16bit sinewave LUT
targetingActel Act 3 technology. As can
easilybeseenfrom thechart,thesizeof the
synthesizedblock for the samedatacontent
variessignificantly dependingon thecoding
style aswell asthe synthesistool used. For
example,Actmap synthesized"Word-Case"
and "Hans-Array" style code most
efficiently, producingamodulecountof 108
and 103 modules respectively. However,
the Synplify synthesizerproducedits best
results of 199 and 201 modules for code
written in "Logic 0" and "Logic t" styles,
while doing somewhat worse with
case/arraystyled code. Other interesting
trendsmay be observed. For example,the
fact that the "Bit-Case" style producedthe
most efficient resource consumption in
conjunction with Synopsys Design
Compiler,butwastheleastefficientwith the
ExemplarandSynplify tools.

L_c I L_ico _I ell, word _ HI.* A_y

Codln6 _)-II

Figure 3a. Sine Wave Synthesis Results for Actel
Act 3 Target Technology

The next selected test case was identical

to the one above with the only exception of

a different target technology; Act 3 was

replaced with Actel SX. In some aspects the

results (represented by the chart in Figure

3b) were similar to the ones in the previous

example. For instance, the Synplify tool

was most efficient for synthesizing

"Logic 1/Logic0"-style code, Synopsys

"preferred" code written in "Bit-Case" style,

and Actmap was most compatible with

"Word-Case" and "Hans-Array" styles.

Some results, however, were quite

surprising. For example, Actmap synthesis

for SX technology required a factor of two
or more increase in the number of modules

(from 108 to 216 for "Word-Case," from

103 to 270 for "Hans-Array") as compared

to Act 3 technology. It is noted that the SX

C-Cell is a superset of the Act 3 C-Module

and should have been more efficient [1]. In

fact, out of all synthesis tools utilized in the

study, only Synplify was able to take

advantage of the improvement in the SX

logic module relative to the Act 3 module,

resulting in lowering of the total module

count. The relative lack of performance in

Actmap for SX in comparison to Act 3

technology can partially be explained by the
fact that the version of the tool available at

the time of study did not have all of the

optimization algorithms implemented. The

next revision of the Actmap software did

showimprovementby bringing the module
count for SX ("Word-Case" style)down to
136. However, the modulecount for Act 3
technologyin the newer revision also was
136,up from 108for thepreviousrelease!

'.......*°'l IISynp)ify
liExa_nar

I Dsynoply_ I

e°dl.t rafts,

Figure 3b. Sine Wave Synthesis Results for Actel

SX Target Technology

The chart in Figure 3c also represents

synthesis results targeted for SX technology,

but for a very different data pattern or ROM

content - a look-up table for a correlator.

This particular data set contains a certain

number of "don't care" values in the address

field. This can be efficiently utilized in

"Logicl/0" style code which selects

minterms to write logic equations but not in

the "Case" style, since VHDL syntax does
not allow "don't care" values in the choice

field of Case statement. In this test case

both Synplify and Actmap were most

effective with the "Logic 1" coding style,

apparently being able to take advantage of
"don't care" values in the address field.

This data set had a prevalence of "0"s for

the output values with no more than 2 out of

8 output bits containing "l"s for any address
value. This was not the case with the

Synopsys Design Compiler tool, as the

"best" results (lowest module count) were

achieved synthesizing with the

"Word-Case"-style code.

i

!

¢°a_0 In..

Figure 3c. Correlator LUT Synthesis Results for

Actel SX Target Technology

A few more input data sets of various

contents were tested in a similar fashion.

Some quite consistent trends were detected;

i.e. certain synthesis tools were more

efficient with certain coding styles. The

most obvious result of the study was the fact

that for any synthesis tool used the resource-

effectiveness of implementing a

combinational block was highly dependant

on the content of data, coding style, target

technology and sometimes even the tool
software revision level.

IV. SEQUENTIAL IP BLOCKS

Given the relative successfulness of the

experiment with the ROM component for

the Kompiler, additional relatively simple

blocks, which include sequential elements,

were developed into Kompiler features.

These included RAM, LIFO, and UART

receivers and transmitters. The development
effort for these blocks concentrated on

making them highly customizable. This

allows a user, for example, to select the

active level of logic,

synchronous/asynchronous, single/dual port

configuration, active edge for clock, and

exact depth and width of memory. UART

IP cores are readily available on the

commercial market, but usually they are

very comprehensive and carry many features

that may not be needed for a particular

v

application. For example, the simplest
version of the UART IP core available from

Actel requires 180 Actel SX modules. On

the other hand, the Kompiler offers separate
receiver and transmitter blocks that can be

stripped-down to only needed level of

functionality. This provides the benefit of

significant resource savings and frequently

lower power dissipation, a goal of most

space-borne designs. Additionally, some
sub-blocks of both the receiver and

transmitter can be optionally utilized by

other components of a SoC design or can be
shared between the receiver and transmitter

modules. As a result, simple but fully

functional double-buffered versions of both

transmitter and receiver were synthesized

utilizing less than 40 modules for each

block, which represents significant resource

savings. The Kompiler also offers single
buffer version for minimal resource

utilization.

Kompiler generated blocks like ROM,

RAM, and LIFO, even though very often

useful by themselves and able to save a

designer a significant amount of time and/or

resources are relatively primitive in their

nature. Building "manually" a whole

system-on-chip with any meaningful

functionality out of such basic components

can be a very labor-intensive and error-

prone task. For the next phase of the

Kompiler development, the emphasis was on

creating a more complex component with

functionality sufficient to become a

foundation for a potential complete system

capable of performing a useful task.

Additionally, we set the goal of complete

automation of this task.

As a prototype for such a component, the

AM29CPL 154, an obsolete single-chip Field

Programmable Controller by AMD, was

selected. In the past this part was used

extensively by many engineers for

implementing complex state machines and

controllers (i.e. focal plane array

controllers). For space flight applications,

the commercial part was not acceptable

because of radiation and power consumption

concerns. For example, testing by JPL

showed that the device was susceptible to

Single Event Latchup (SEL) [2]. The

Kompiler-integrated version of the part,

called the 29KPL154, inherited all features

of the original controller including

compatibility with the native assembler and

simulator. Following our development

philosophy, we required that it be fully

customizable to fit exactly the requirements

of a particular application and be fully

integrated into Kompiler environment. An

additional goal was to analyze the processor

and its instruction set architecture to explore

possible optimizations for implementing

small processors.

AM29CPL154 original features (all

preserved in 29KPL154 component) include

a 512x36-bit external program ROM, 8 test

inputs, 16 user outputs, 28 instructions, and

a 17x9-bit stack [3]. Developing the

29KPL154 as a Kompiler block required not

just copying and implementing the

architecture of the original device, but

allowing for customization and optimization

of the component as well. Among the

user-configurable options for the 29KPL154

are program memory internal, external or a

combination, custom sizing of stack depth (0

to 17) and additional test inputs (up to 8)

and user outputs (up to 16). If internal

program memory is desired, the contents of

microprogram are synthesized as a ROM

block with the implementation utilizing the

optimal style of coding. The user program

is analyzed by the Kompiler and only
utilized instructions and test conditions are

implemented in hardware; the decoder,

execution hardware, registers, etc. for

instructions not used for an application are

not included in the final synthesized design.

Additionally, instruction encoding may be

optionally optimized by inserting "don't

care's into unused fields of certain
instruction. An assemblertypically assigns
eithera '1' or a '0' to anunusedfield in the
instruction. The Kompiler, when
post-processing the assembler's output,
replacesthe assignedvalueswith a "don't
care,"giving the optimizermore freedomto
produceamorecompactdesign.

The AM29CPL154 assembleris fully
integrated into the Kompiler platform
allowing for "one-click" generationprocess.
Theuseronly needsto selectdesiredoptions
and configurationsand supply a file with
assemblycode (Figure 4). Two of the
building blocks for 29KPLI54 were
implemented using previously developed
components- programmemoryis basedon
the ROM componentand the stackutilizes
theLIFO component.

'+,',_eVHDLCodeI C_ ["_,e_dS_ [

__2_C:\U S ER \NewKomplekto_ vhd -±

ibl_ Line Ler,g_h _ :I __:................_ l S_alol

, _lActMap _ C,e_eStrr_Jlu_F_eP i
--

Figure 4.29KPL 154 Generation.

To evaluate the potential benefits of

customization and optimization for the

29KPL154 a program used in a previous

29CPL154 application was utilized to

generate a customized processor. The

sample program occupies approximately one

quarter of the maximum allowable 512 word

program memory and was originally used

for prototyping a Focal Plane Array

controller for a spaceflight mission. The

29KPL154 component was generated for

three different levels of customization -

unoptimized 29CPL154-1ike, optimized

program ROM only, and a fully customized
version with custom-tailored stack,

instruction decoder, and optimized

instruction encoding. The results of

synthesis using Actmap and Synplify tools

for Act 3 as a target technology are shown

on the chart (Figure 5).

|

Fully C_lom_z*d Opl]mlzed Proonim ROM "29GPL 1544i_l*

Level of Opllmlz_io_

Figure 5. Controller Implementation with

29KPL 154 utilizing various levels of

customization.

The chart clearly shows that the

implementation of a customized processor

has significant gain for the user. In this

example, we see that the optimized

29KPL154 brings about approximately 40%

savings in resource consumption for this

particular design, while still maintaining full

compatibility with the original device.

V. CONCLUSIONS

The Kompiler development is still very

much a work in progress, as the verification

effort for 29KPL154 is under way and

additional components are incorporated into

Kompiler environment. Indeed, the

extensible design of the Kompiler is geared

towards continuously adding new

components and features, while presenting

the user with a consistent, easy-to-use

interface.

v

Nevertheless, the concept of generating

small and moderately sized

custom-configured blocks of IP using an

integrated environment such as Kompiler

seems to be proven as a realistic task. It is

also quite obvious that at the very least using

automated generation of IP blocks shortens

the development time and helps avoid

simple coding errors. For certain tasks, like

generating a large block of combinational

logic the manual coding approach is

extremely labor-intensive and error-prone,

and utilizing Kompiler code-generating

capabilities allows for tremendous savings

in engineering time and optimization
sometimes unattainable with traditional

methods. The rapid generation of HDL

using different coding styles makes

optimization of large logic blocks feasible,

practical, and effective.

It was also shown that along with small

and simple blocks, more complex and

comprehensive cores capable of substantial

functionality can be integrated into fully

automated IP-generating environment such

as Kompiler. The 29KPL154 has the

capability to be a cornerstone of SoC

implementation using a small processor for a

spaceflight application, yet it can be

customized to fit in a small, radiation-

hardened FPGA.

We have also determined that combining

HLL-based software equipped with a simple

user interface with VHDL permits a

convenient and flexible approach to

hardware design. The resulting environment

is suitable for implementing components

ranging from very simple and universal to

more complex and specialized; however, the

task of embedding and customizing a

component as well as designing a suitable

user interface escalates greatly with block's

increasing complexity.

Additionally, it was shown conclusively

that various synthesis tools perform identical

tasks with various degree of efficiency

depending on the style of coding, the

specific data content, and the software
revision level of the tool.

REFERENCES

[1] Actel Corporation. Actel 54SX Family

FPGA, 1999.

[2] JPL/NASA Radiation Effects

Database.

http://radnet.jpl.nasa.gov/SEE/1188.txt

[3] Advanced Micro Devices.

Am29CPL 154 Field-Programmable

Controller, 1990.

